Data Compression by Square Root of the Value

John Marriner

Revised September 4, 2003

We assume that we digitize a value V

[image: image1.wmf](

)

n

gs

V

+

=

Int

[1]

where the Int function means truncation of a real number to the next smallest integer, s is the number of photo-electrons, g is the gain that converts photo-electrons to ADC counts (adu), and n is the readout noise. It is assumed that s follows a Poisson distribution around some average value
[image: image2.wmf]s

. If s is not too small, the Poisson distribution is approximately described by a gaussian of mean
[image: image3.wmf]s

 and width
[image: image4.wmf]s

). The noise n is assumed to follow a gaussian distribution with mean zero and rms
[image: image5.wmf]n

d

, a number that is independent of s. For a given pixel we measure V and we know g and
[image: image6.wmf]n

d

from the device characterization. The goal is to determine the value of
[image: image7.wmf]s

 from the measured value of V, namely:

[image: image8.wmf]g

V

s

=

[2]

To determine the accuracy, it is sufficient to consider the error in V, which is

[image: image9.wmf]2

2

2

2

2

t

n

s

g

V

d

d

d

d

+

+

=

[3]

where

[image: image10.wmf]error)

n

(truncatio

12

1

t

constant

known

2

2

2

=

=

»

»

d

d

d

n

g

V

s

s

[4]

We wish to consider the accuracy obtained when V is transformed to a new variable U which truncated to an integer value and then used to reconstruct the original value of V (but with some error because of the truncation. Let

[image: image11.wmf](

)

g

n

V

q

U

2

2

Int

d

+

=

[5]

where q is a positive real parameter. Consider the quantity

[image: image12.wmf]g

n

q

U

V

2

2

2

2

d

-

÷

÷

ø

ö

ç

ç

è

æ

=

¢

[6]

The error on V’ will be larger than the error on V because of the truncation error in the definition of U. To be precise

[image: image13.wmf](

)

(

)

12

1

12

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

+

+

=

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

=

÷

÷

ø

ö

ç

ç

è

æ

=

¢

gq

n

gV

t

q

g

n

V

V

t

g

n

V

V

q

q

g

n

V

U

q

U

V

d

d

d

d

d

d

d

d

d

d

[7]

The process of taking the square root introduces an additional truncation error proportional to the original error and inversely proportional to the gain (g) and the truncation parameter (q). In words, a square root transform of the type shown above tailors the number of bits retained so that the truncation error is always proportional to the statistical error.

Some details

In the preceding, we have assumed that the argument of the square root function is positive. However, we need to allow for the case when
[image: image14.wmf]2

n

V

d

-

<

, which will occur frequently if values of
[image: image15.wmf]n

 are comparable to or smaller than the read noise (
[image: image16.wmf]n

d

). There are a number of ad-hoc solutions possible, but none seem to be suggested by our primary motivation – namely to scale the truncation error to a fixed fraction of the statistical error. The approximation that the statistical error is given by the square root of the observed number of events breaks down when
[image: image17.wmf]n

~1.

I propose a relatively simple solution that the square root scaling be used for large values and that a linear map be used for small and negative values. Mathematically,

[image: image18.wmf](

)

(

)

ï

þ

ï

ý

ü

ï

î

ï

í

ì

£

-

>

+

=

c

v

c

v

u

v

v

c

i

v

v

δn

i

q

i

Int

Int

2

2

[8]

where
[image: image19.wmf]v

i

 is the original integer value and
[image: image20.wmf]u

i

 is the (square root) mapped integer. I make the break between the linear and square root forms where the slopes are equal, namely,

[image: image21.wmf]2

2

n

q

v

c

d

-

=

[9]

and continuity between the two forms determines that

[image: image22.wmf]2

2

n

i

q

v

c

v

c

d

+

-

=

[10]

Reconstruction of the original values from the mapped data is most easily accomplished with a lookup table. For a given mapped value
[image: image23.wmf]u

i

, the original value should be recovered by the formula

[image: image24.wmf]2

1

)

(

)

(

+

+

=

¢

l

v

f

v

v

i

i

i

[11]

where
[image: image25.wmf])

(

f

v

i

is the smallest integer that maps to
[image: image26.wmf]u

i

 and
[image: image27.wmf])

(

l

v

i

 is the largest integer that maps to
[image: image28.wmf]u

i

. Note that when only one integer value maps to
[image: image29.wmf]u

i

, the recovered value will be at the center of the bin.

For g=0.25 (the SLOAN case) the recommended value is
[image: image30.wmf]2

=

q

, for which

[image: image31.wmf]56

.

5

43

.

2

-

=

=

c

v

c

[12]

and the nominal increase in errors is about 5%.

Numerical simulation

I have performed a numerical simulation to test the performance of the square root mapping against a traditional binning method. The data are generated by taking a Poisson distributions (
[image: image32.wmf]n

=10, 100, 1000, and 10000) and convoluting them with a guassian distribution (=5). The resulting distribution is multiplied by the ADC gain (g=0.25) and placed in bins according to the Int function defined above. The resulting distribution of integers is mapped by the square-root algorithm described above.

The square-root binned distribution was used to reconstruct the original integer distribution (according to Equation [11]) and plotted using integer spaced bins. The plots are shown in Figures 1 (q=1) and 2 (q=2). This method is inaccurate since the reconstructed value is sometimes integer and sometimes half-integer, but it gives a feel for how the algorithm works. Notice that the square-root binned data occupies about the same number of bins (say 3 for q=1 and 6 for q=2) independently of nbar. The number of bins is about the same between the two methods for small
[image: image33.wmf]n

 (10), but becomes sparse as
[image: image34.wmf]n

 increases.

[image: image35.wmf]0

100000

200000

300000

400000

500000

-5

0

5

10

15

Nominal

Mapped

Events

Value

10 photo-electrons

Mean value = 2.5

 EMBED KGraph_Plot [image: image36.wmf]0

50000

100000

150000

200000

0

10

20

30

40

50

Nominal

Mapped

Events

Value

100 photo-electrons

Mean value = 25

[image: image37.wmf]0

10000

20000

30000

40000

50000

60000

70000

80000

200

220

240

260

280

300

Nominal

Mapped

Events

Value

1000 photo-electrons

Mean value = 250

 EMBED KGraph_Plot [image: image38.wmf]0

5000

10000

15000

20000

2300

2350

2400

2450

2500

2550

2600

2650

2700

Nominal

Mapped

Events

Value

10000 photo-electrons

Mean value = 2500

Figure 1. Distributions for
[image: image39.wmf]n

=10 (upper left), 100 (upper right), 1000 (lower left), and 10000 (lower right). The blue curve is the generated distribution in integer bins and the red curve is the square-root binned distribution (q=1) afer being converted back to a linear scale.

[image: image40.wmf]0

50000

100000

150000

200000

250000

300000

-5

0

5

10

15

Nominal

Mapped

Events

Value

10 photo-electrons

Mean value = 2.5

 EMBED KGraph_Plot [image: image41.wmf]0

50000

100000

150000

0

10

20

30

40

50

Nominal

Mapped

Events

Value

100 photo-electrons

Mean value = 25

[image: image42.wmf]0

10000

20000

30000

40000

50000

60000

200

220

240

260

280

300

Nominal

Mapped

Events

Value

1000 photo-electrons

Mean value = 250

 EMBED KGraph_Plot [image: image43.wmf]0

5000

10000

15000

20000

2300

2350

2400

2450

2500

2550

2600

2650

2700

Nominal

Mapped

Events

Value

10000 photo-electrons

Mean value = 2500

Figure 2. Distributions for
[image: image44.wmf]n

=10 (upper left), 100 (upper right), 1000 (lower left), and 10000 (lower right). The blue curve is the generated distribution in integer bins and the red curve is the square-root binned distribution (q=2) afer being converted back to a linear scale.

A more precise statistical test was performed on the data to see how the computed mean and rms of the binned data compare to the value of
[image: image45.wmf]n

 that was used to generate the distribution and the analytically estimated rms. The comparison is shown in Table 1 (q=1) and Table 2 (q=2). In the upper half of the Table is the reconstructed mean value of the distribution. The “computed” value is the generated value (
[image: image46.wmf]n

g

). The “Nominal” values are the reconstructed mean using integer binning (first line), the error on the mean (computed rms of the distribution divided by the square root of the number of entries—about 106), and, in () the number of standard deviations from the generated value. The “Mapped” values are the same quantities obtained from the square-root binned data. It is clear that the mean of the square root binned data has small but statistically significant biases. In general, binned data will provide a biased estimate of the mean whenever there is a significant gradient to the distribution. The effect is smaller (consistent with 0) in the nominal data than the mapped data not only because of the larger number of bins but because the distribution is more symmetric than the square root mapped data. The effect is much smaller with the q=2 than with q=1.

The lower half of the Table contains information on the rms of the distribution. The “Computed” values are the rms computed from Equation [3] and the expected additional error (Equation [11]). The “Nominal” value is the computed rms of the integer binned data and the number in () is the excess error compared to that computed from Equation [3]. The “Mapped” value is similarly computed from the square-root binned data and the excess (relative to Equation [3]) is given in (). Naively, we should expect the excess (%) listed under “Nominal” should be zero and the excess (%) listed under “Mapped” should equal the number shown under “Computed.”

Table 1. Statistical values for q=1.

	
	
[image: image47.wmf]n

	10
	100
	1000
	10000

	Mean
	Computed
	2.5
	25
	250
	2500

	
	Nominal
	2.4989

(0.0015

(-0.71)
	25.0004

(0.0028

(0.14)
	249.999

(0.0080

(-0.12)
	2500.00

(0.0250

(0.00)

	
	Mapped
	2.5610

(0.0016

(38.76)
	25.0464

(0.0032

(14.46)
	250.008

(0.0091

(0.88)
	2500.03

(0.0292

(1.03)

	Rms
	Computed
	1.5069

(14.94%)
	2.8100

(15.32%)
	8.0091

(15.45%)
	25.0329

(15.47%)

	
	Nominal
	1.5058

(-0.08%)
	2.8081

(-0.07%)
	8.0093

(0.00%)
	25.0347

(0.01%)

	
	Mapped
	1.5747

(4.50%)
	3.2086

(14.19%)
	9.1179

(13.84%)
	29.2319

(16.77%)

Table 2. Statistical values for q=2.

	
	
[image: image48.wmf]n

	10
	100
	1000
	10000

	Mean
	Computed
	2.5
	25
	250
	2500

	
	Nominal
	2.4989

(0.0015

(-0.71
	25.0004

(0.0028

(0.14)
	249.999

(0.0080

(-0.12)
	2500.00

(0.0250

(0.00)

	
	Mapped
	2.5024

(0.0015

(1.62)
	25.0200

(0.0029

(6.87)
	250.001

(0.0083

(0.12)
	2500.00

(0.0261

(0.00)

	Rms
	Computed
	1.5069

(3.94%)
	2.8100

(4.04%)
	8.0091

(4.08%)
	25.0329

(4.08%)

	
	Nominal
	1.5058

(-0.08%)
	2.8081

(-0.07%)
	8.0093

(0.00%)
	25.0347

(0.01%)

	
	Mapped
	1.5058

(-0.08%)
	2.9113

(3.61%)
	8.3245

(3.94%)
	26.0505

(4.07%)

Summary

Generally, the algorithm seems to work as expected, with the most important deviations occurring for small
[image: image49.wmf]n

.

_1123482832.unknown

_1123591968.bin

_1124171332.unknown

_1124171870.unknown

_1124170609.unknown

_1124170635.unknown

_1123592032.bin

_1123592125.bin

_1123592199.bin

_1123592229.bin

_1123592162.bin

_1123592065.bin

_1123592003.bin

_1123483121.unknown

_1123483542.unknown

_1123483560.unknown

_1123483284.unknown

_1123483051.unknown

_1123483087.unknown

_1123482882.unknown

_1122181889.unknown

_1123481718.unknown

_1123482456.unknown

_1123482675.unknown

_1123482697.unknown

_1123482535.unknown

_1123481762.unknown

_1122182244.unknown

_1122182283.unknown

_1122182213.unknown

_1122181574.unknown

_1122181808.unknown

_1122181816.unknown

_1122181785.unknown

_1122181334.unknown

_1122181349.unknown

_1120913886.unknown

_1122138668.unknown

_1120913838.unknown

